Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.555
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38584088

RESUMO

The human brain is distinguished by its ability to perform explicit logical reasoning like transitive inference. This study investigated the functional role of the inferior parietal cortex in transitive inference with functional MRI. Participants viewed premises describing abstract relations among items. They accurately recalled the relationship between old pairs of items, effectively inferred the relationship between new pairs of items, and discriminated between true and false relationships for new pairs. First, the inferior parietal cortex, but not the hippocampus or lateral prefrontal cortex, was associated with transitive inference. The inferior parietal activity and functional connectivity were modulated by inference (new versus old pairs) and discrimination (true versus false pairs). Moreover, the new/old and true/false pairs were decodable from the inferior parietal representation. Second, the inferior parietal cortex represented an integrated relational structure (ordered and directed series). The inferior parietal activity was modulated by serial position (larger end versus center pairs). The inferior parietal representation was modulated by symbolic distance (adjacent versus distant pairs) and direction (preceding versus following pairs). It suggests that the inferior parietal cortex may flexibly integrate observed relations into a relational structure and use the relational structure to infer unobserved relations and discriminate between true and false relations.


Assuntos
Encéfalo , Resolução de Problemas , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Mapeamento Encefálico
2.
Neuroimage ; 291: 120602, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579900

RESUMO

Working memory (WM) describes the dynamic process of maintenance and manipulation of information over a certain time delay. Neuronally, WM recruits a distributed network of cortical regions like the visual and dorsolateral prefrontal cortex as well as the subcortical hippocampus. How the input dynamics and subsequent neural dynamics impact WM remains unclear though. To answer this question, we combined the analysis of behavioral WM capacity with measuring neural dynamics through task-related power spectrum changes, e.g., median frequency (MF) in functional magnetic resonance imaging (fMRI). We show that the processing of the input dynamics, e.g., the task structure's specific timescale, leads to changes in the unimodal visual cortex's corresponding timescale which also relates to working memory capacity. While the more transmodal hippocampus relates to working memory capacity through its balance across multiple timescales or frequencies. In conclusion, we here show the relevance of both input dynamics and different neural timescales for WM capacity in uni - and transmodal regions like visual cortex and hippocampus for the subject's WM performance.


Assuntos
Córtex Pré-Frontal Dorsolateral , Memória de Curto Prazo , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Mapeamento Encefálico
3.
Brain Behav ; 14(4): e3414, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616330

RESUMO

Emerging evidences suggest that cognitive deficits in individuals with mild cognitive impairment (MCI) are associated with disruptions in brain functional connectivity (FC). This systematic review and meta-analysis aimed to comprehensively evaluate alterations in FC between MCI individuals and healthy control (HC) using functional near-infrared spectroscopy (fNIRS). Thirteen studies were included in qualitative analysis, with two studies synthesized for quantitative meta-analysis. Overall, MCI patients exhibited reduced resting-state FC, predominantly in the prefrontal, parietal, and occipital cortex. Meta-analysis of two studies revealed a significant reduction in resting-state FC from the right prefrontal to right occipital cortex (standardized mean difference [SMD] = -.56; p < .001), left prefrontal to left occipital cortex (SMD = -.68; p < .001), and right prefrontal to left occipital cortex (SMD = -.53; p < .001) in MCI patients compared to HC. During naming animal-walking task, MCI patients exhibited enhanced FC in the prefrontal, motor, and occipital cortex, whereas a decrease in FC was observed in the right prefrontal to left prefrontal cortex during calculating-walking task. In working memory tasks, MCI predominantly showed increased FC in the medial and left prefrontal cortex. However, a decreased in prefrontal FC and a shifted in distribution from the left to the right prefrontal cortex were noted in MCI patients during a verbal frequency task. In conclusion, fNIRS effectively identified abnormalities in FC between MCI and HC, indicating disrupted FC as potential markers for the early detection of MCI. Future studies should investigate the use of task- and region-specific FC alterations as a sensitive biomarker for MCI.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Animais , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem
4.
Aging Clin Exp Res ; 36(1): 94, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630202

RESUMO

BACKGROUND: Although donepezil is a commonly used drug for treating Alzheimer's disease (AD), the mechanisms by which it affects patients' functional brain activity, and thus modulates clinical symptoms, remain unclear. METHODS: In the present study, we used resting-state functional magnetic resonance imaging (MRI) and regional homogeneity (ReHo) to investigate the effects of donepezil on local brain activity in AD patients. Resting-state functional MRI data were collected from 32 subjects: 16 healthy controls and 16 AD patients. All 16 AD patients underwent 6 months of donepezil treatment and received two MRI scans (pre- and post-intervention). Analysis of covariance and post hoc analyses were used to compare ReHo differences among the healthy controls, pre-intervention AD patients, and post-intervention AD patients. Pearson correlation analysis was used to examine relationships between ReHo values in differential brain regions and clinical symptoms. RESULTS: Compared with healthy controls, post-intervention AD patients had reduced ReHo in the orbital part of the inferior frontal gyrus, and pre-intervention AD patients had reduced ReHo in the orbital part of the right inferior frontal gyrus. Pattern recognition models revealed that pre-intervention ReHo values in abnormal brain regions of AD patients were 76% accurate for predicting the efficacy of donepezil on cognitive function and 65% accurate for predicting its efficacy on depressive symptoms. CONCLUSIONS: These findings deepen our understanding of the brain mechanisms underlying the clinical efficacy of donepezil in AD patients, and provide a novel way to predict its clinical efficacy in such patients.


Assuntos
Doença de Alzheimer , Humanos , Donepezila/uso terapêutico , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo , Cognição
5.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479810

RESUMO

Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.


Assuntos
Envelhecimento Saudável , Memória Episódica , Humanos , Idoso , Adulto Jovem , Adulto , Mapeamento Encefálico , Córtex Pré-Frontal/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética
6.
PLoS One ; 19(3): e0298235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551909

RESUMO

Prior cross-cultural studies have demonstrated differences among Eastern and Western cultures in memory and cognition along with variation in neuroanatomy and functional engagement. We further probed cultural neuroanatomical variability in terms of its relationship with memory performance. Specifically, we investigated how memory performance related to gray matter volume in several prefrontal lobe structures, including across cultures. For 58 American and 57 Taiwanese young adults, memory performance was measured with the California Verbal Learning Test (CVLT) using performance on learning trial 1, on which Americans had higher scores than the Taiwanese, and the long delayed free recall task, on which groups performed similarly. MRI data were reconstructed using FreeSurfer. Across both cultures, we observed that larger volumes of the bilateral rostral anterior cingulate were associated with lower scores on both CVLT tasks. In terms of effects of culture, the relationship between learning trial 1 scores and gray matter volumes in the right superior frontal gyrus had a trend for a positive relationship in Taiwanese but not in Americans. In addition to the a priori analysis of select frontal volumes, an exploratory whole-brain analysis compared volumes-without considering CVLT performance-across the two cultural groups in order to assess convergence with prior research. Several cultural differences were found, such that Americans had larger volumes in the bilateral superior frontal and lateral occipital cortex, whereas Taiwanese had larger volumes in the bilateral rostral middle frontal and inferior temporal cortex, and the right precuneus.


Assuntos
Encéfalo , Lobo Temporal , Adulto Jovem , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética
7.
Medicine (Baltimore) ; 103(13): e37139, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552043

RESUMO

BACKGROUND: Mild traumatic brain injury patients commonly complain headache and central pain, and the pain accompanies depressive mood change. This case study reports the therapeutic effect of repetitive transcranial magnetic stimulation (rTMS) in mild traumatic brain injury patient with headache and depression through objective serial changes of diffusion tensor imaging (DTI). METHODS: The 51-year-old man complained of headache and depression despite conventional treatment for 13 months. We applied 15 times rTMS on the left dorsolateral prefrontal cortex. We checked the pain and depression through numeric rating scale (NRS) and Beck depression inventory (BDI) when admission, discharged, and 1 month after discharge. DTI was performed 3 times; before, during-day of rTMS 6th stimulation, and after-day of rTMS 15th stimulation. Then the reconstructed White matter related to pain and depression was obtained. RESULTS: NRS and BDI showed significant improvement and it was maintained 1 year after discharge. DTI-based metrics of the White matters related to pain and depression gradually increased before - during - after rTMS. CONCLUSION: Studies focused on examining changes in pain, depression and DTI-based metrics of White matter are rare. This case is significant in that not only pain and depression improved after the rTMS, but also serial changes in White matter were observed in DTI.


Assuntos
Concussão Encefálica , Cefaleia Pós-Traumática , Masculino , Humanos , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana/métodos , Depressão/etiologia , Depressão/terapia , Imagem de Tensor de Difusão , Dor , Cefaleia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Resultado do Tratamento
8.
Am J Psychiatry ; 181(4): 299-309, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38476042

RESUMO

OBJECTIVE: Anxiety disorders are among the most common psychiatric disorders in youths and emerge during childhood. This is also a period of rapid white matter (WM) development, which is critical for efficient neuronal communication. Previous work in preadolescent children with anxiety disorders demonstrated anxiety disorder-related reductions in WM microstructural integrity (fractional anisotropy [FA]) in the uncinate fasciculus (UF), the major WM tract facilitating prefrontal cortical-limbic structural connectivity. Importantly, this association was found only in boys with anxiety disorders. To confirm this finding and more comprehensively understand WM changes in childhood anxiety, this mega-analytic study characterizes WM alterations related to anxiety disorders and sex in the largest sample of preadolescent children to date. METHODS: Diffusion tensor imaging data from published studies of preadolescent children with anxiety disorders and healthy volunteers (ages 8-12) (N=198) were combined with a new data set (N=97) for a total sample of 165 children with anxiety disorders and 132 healthy volunteers. Children with anxiety disorders met DSM-5 criteria for current generalized, separation, and/or social anxiety disorder. Analyses of tractography and voxel-wise data assessed between-group differences (anxiety disorder vs. healthy volunteer), effects of sex, and their interaction. RESULTS: Tract-based and voxel-wise analyses confirmed a significant reduction in UF FA in boys but not girls with anxiety disorders. Results also demonstrated other significant widespread anxiety disorder-related WM alterations specifically in boys, including in multiple commissural, association, projection, and brainstem regions. CONCLUSIONS: In addition to confirming male-specific anxiety disorder-related reductions in UF FA, the results demonstrate that anxiety disorders in boys and not girls are associated with broadly distributed WM alterations across the brain. These findings support further studies focused on understanding the extent to which WM alterations in boys with anxiety disorders are involved in pathophysiological processes that mediate anxiety disorders. The findings also suggest the possibility that WM microarchitecture could serve as a novel treatment target for childhood anxiety disorders.


Assuntos
Substância Branca , Criança , Feminino , Humanos , Masculino , Adolescente , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Encéfalo/diagnóstico por imagem , Transtornos de Ansiedade/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Anisotropia
9.
Brain Struct Funct ; 229(4): 987-999, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502328

RESUMO

The frontal aslant tract (FAT) is a white matter tract connecting the superior frontal gyrus (SFG) to the inferior frontal gyrus (IFG). Its dorsal origin is identified in humans in the medial wall of the SFG, in the supplementary motor complex (SM-complex). However, empirical observation shows that many FAT fibres appear to originate from the dorsal, rather than medial, portion of the SFG. We quantitatively investigated the actual origin of FAT fibres in the SFG, specifically discriminating between terminations in the medial wall and in the convexity of the SFG. We analysed data from 105 subjects obtained from the Human Connectome Project (HCP) database. We parcelled the cortex of the IFG, dorsal SFG and medial SFG in several regions of interest (ROIs) ordered in a caudal-rostral direction, which served as seed locations for the generation of streamlines. Diffusion imaging data (DWI) was processed using a multi-shell multi-tissue CSD-based algorithm. Results showed that the number of streamlines originating from the dorsal wall of the SFG significantly exceeds those from the medial wall of the SFG. Connectivity patterns between ROIs indicated that FAT sub-bundles are segregated in parallel circuits ordered in a caudal-rostral direction. Such high degree of coherence in the streamline trajectory allows to establish pairs of homologous cortical parcels in the SFG and IFG. We conclude that the frontal origin of the FAT is found in both dorsal and medial surfaces of the superior frontal gyrus.


Assuntos
Conectoma , Substância Branca , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem
10.
J Affect Disord ; 354: 526-535, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513774

RESUMO

BACKGROUND: White matter hyperintensities (WMHs) are associated with higher anxiety or depression (A/D) incidence. We investigated associations of WMHs with A/D, cerebrovascular reactivity (CVR), and functional connectivity (FC) to identify potential pathomechanisms. METHODS: Participants with WMH (n = 239) and normal controls (NCs, n = 327) were assessed for A/D using the Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale (HAMD). The CVR and FC maps were constructed from resting-state functional MRI. Two-way analysis of covariance with fixed factors A/D and WMH was performed to identify regional CVR abnormalities. Seed-based FC analyses were then conducted on regions with WMH × A/D interaction effects on CVR. Logistic regression models were constructed to examine the utility of these measurements for identifying WMH-related A/D. RESULTS: Participants with WMH related A/D exhibited significantly greater CVR in left insula and lower CVR in right superior frontal gyrus (SFG.R), and HAMA scores were negatively correlated with CVR in SFG.R (r = -0.156, P = 0.016). Insula-SFG.R negative FC was significantly weaker in WMH patients with suspected or definite A/D. A model including CVR plus FC changes identified WMH-associated A/D with highest sensitivity and specificity. In contrast, NCs with A/D exhibited greater CVR in prefrontal cortex and stronger FC within the default mode network (DMN) and between the DMN and executive control network. LIMITATIONS: This cross-sectional study requires validation by longitudinal and laboratory studies. CONCLUSIONS: Impaired CVR in SFG.R and weaker negative FC between prefrontal cortex and insula may contribute to WMH-related A/D, providing potential diagnostic imaging markers and therapeutic targets.


Assuntos
Depressão , Substância Branca , Humanos , Depressão/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Transversais , Córtex Pré-Frontal/diagnóstico por imagem , Ansiedade/diagnóstico por imagem , Encéfalo
11.
Neuroimage ; 291: 120596, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554783

RESUMO

BACKGROUND: Left prefrontal intermittent theta-burst stimulation (iTBS) has emerged as a safe and effective transcranial magnetic stimulation (TMS) treatment protocol in depression. Though network effects after iTBS have been widely studied, the deeper mechanistic understanding of target engagement is still at its beginning. Here, we investigate the feasibility of a novel integrated TMS-fMRI setup and accelerated echo planar imaging protocol to directly observe the immediate effects of full iTBS treatment sessions. OBJECTIVE/HYPOTHESIS: In our effort to explore interleaved iTBS-fMRI feasibility, we hypothesize that TMS will induce acute BOLD signal changes in both the stimulated area and interconnected neural regions. METHODS: Concurrent TMS-fMRI with full sessions of neuronavigated iTBS (i.e. 600 pulses) of the left dorsolateral prefrontal cortex (DLPFC) was investigated in 18 healthy participants. In addition, we conducted four TMS-fMRI sessions in a single patient on long-term maintenance iTBS for bipolar depression to test the transfer to clinical cases. RESULTS: Concurrent TMS-fMRI was feasible for iTBS sequences with 600 pulses. During interleaved iTBS-fMRI, an increase of the BOLD signal was observed in a network including bilateral DLPFC regions. In the clinical case, a reduced BOLD response was found in the left DLPFC and the subgenual anterior cingulate cortex, with high variability across individual sessions. CONCLUSIONS: Full iTBS sessions as applied for the treatment of depressive disorders can be established in the interleaved iTBS-fMRI paradigm. In the future, this experimental approach could be valuable in clinical samples, for demonstrating target engagement by iTBS protocols and investigating their mechanisms of therapeutic action.


Assuntos
Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Giro do Cíngulo , Córtex Pré-Frontal Dorsolateral
12.
Neuroimage ; 291: 120598, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555995

RESUMO

It has been observed that one's Behavioral Approach System (BAS) can have an effect on decision-making under uncertainty, although the results have been mixed. To discern the underlying neural substrates, we hypothesize that sex may explain the conflicting results. To test this idea, a large sample of participants was studied using resting state fMRI, utilizing fractional Amplitude of Low Frequency Fluctuations (fALFF) and Resting-State Functional Connectivity (rsFC) techniques. The results of the Iowa Gambling Task (IGT) revealed an interaction between sex and BAS, particularly in the last 60 trials (decision-making under risk). Males with high BAS showed poorer performance than those with low BAS. fALFF analysis showed a significant interaction between BAS group and sex in the left superior occipital gyrus, as well as the functional connectivity between this region and the left ventrolateral prefrontal cortex. Additionally, this functional connectivity was further positively correlated with male performance in the IGT, particularly in the decision-making under risk stage. Furthermore, it was found that the functional connectivity between left ventrolateral prefrontal cortex and left superior occipital gyrus could mediate the relationship between BAS and decision-making in males, particularly in the decision-making under risk stage. These results suggest possible sex-based differences in decision-making, providing an explanation for the inconsistent results found in prior research. Since the research was carried out exclusively with Chinese university students, it is essential to conduct further studies to investigate whether the findings can be generalized.


Assuntos
Jogo de Azar , Motivação , Humanos , Masculino , Tomada de Decisões , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Cerebral , Imageamento por Ressonância Magnética
13.
J Affect Disord ; 354: 126-135, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479517

RESUMO

BACKGROUND: Emotion regulation deficits, particularly in cognitive reappraisal, are crucial in depression and anxiety. However, research on the neural mechanisms of implicit emotion regulation is lacking, and it remains unclear whether these mechanisms are shared or distinct between the two disorders. METHODS: We investigated the neural mechanisms of implicit cognitive reappraisal in 28 individuals with major depressive disorder (MDD), 25 with generalized anxiety disorder (GAD), and 30 healthy controls (HC) using functional near-infrared spectroscopy (fNIRS). Participants completed an implicit cognitive reappraisal task and underwent neuropsychological and clinical assessments. RESULTS: We found that MDD patients reported higher levels of rumination and lower utilization of cognitive reappraisal, while GAD patients reported reduced use of perspective-taking. Notably, both MDD and GAD patients exhibited decreased activation in the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) compared to HC participants during implicit cognitive reappraisal. Specifically, inadequate OFC activation was observed in MDD patients, while GAD patients demonstrated OFC deactivation during the task. Furthermore, DLPFC activation showed a negative correlation with depression severity in MDD patients, while OFC activation was positively correlated with perspective-taking in GAD patients. LIMITATIONS: fNIRS has limited depth and spatial resolution. CONCLUSION: Our fNIRS study is the first to reveal shared and distinct neurobiological profiles of depression and anxiety in implicit emotion regulation. These findings underscore the significance of reduced DLPFC/OFC activation in emotion regulation impairment and highlight unique OFC activation patterns in these disorders. These insights have potential implications for developing cognitive-behavioral therapy and transcranial magnetic stimulation as treatment approaches.


Assuntos
Transtorno Depressivo Maior , Regulação Emocional , Humanos , Emoções/fisiologia , Transtorno Depressivo Maior/psicologia , Depressão , Imageamento por Ressonância Magnética , Transtornos de Ansiedade/psicologia , Ansiedade , Córtex Pré-Frontal/diagnóstico por imagem
14.
J Psychiatr Res ; 172: 281-290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428164

RESUMO

Generalized anxiety disorder (GAD) and adult attention-deficit/hyperactivity disorder (ADHD) are commonly reported comorbidities. Adult GAD patients with comorbid ADHD are often underdiagnosed and undertreated. To explore the clinical value of functional near-infrared spectroscopy (fNIRS) data for assisting in the accurate diagnosis of ADHD in individuals with GAD, haemoglobin (HbO) concentration changes in the prefrontal cortex (PFC) were detected via fNIRS in 49 patients with both GAD and ADHD, 46 patients with GAD, and 34 healthy controls (HCs) during a verbal fluency task (VFT) and a GO/NOGO task. The correlations between PFC fNIRS data and the severity of inattention and hyperactivity symptoms assessed using the adult ADHD Self-Report Scale (ASRS) were analyzed. Our results showed that, during the GO/NOGO task, channels in the left dorsolateral PFC (channels 28 and 29) were hyperactivated, while channels in the medial PFC (channels 36, 37, and 47) were hypoactivated in participants with ADHD and GAD compared with those with GAD alone. During the VFT, compared with the HC group, both the ADHD + GAD group and the GAD group exhibited significantly decreased HbO activation in the medial PFC (channels 37, 38, and 48) and in the left ventrolateral PFC (channel 39); moreover, no difference was found between the ADHD + GAD group and the GAD group. Activation in the left dorsolateral PFC (channels 28 and 29) during the GO/NOGO task showed a significant positive correlation with ASRS-inattention scores. Our results indicated that fNIRS data collected during the GO/NOGO task may help to distinguish patients with comorbid GAD and ADHD from those with GAD alone.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adulto , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Ansiedade , Transtornos de Ansiedade/epidemiologia , Córtex Cerebral
15.
Neuroimage ; 290: 120574, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467346

RESUMO

Obesity has a profound impact on metabolic health thereby adversely affecting brain structure and function. However, the majority of previous studies used a single structural index to investigate the link between brain structure and body mass index (BMI), which hinders our understanding of structural covariance between regions in obesity. This study aimed to examine the relationship between macroscale cortical organization and BMI using novel morphometric similarity networks (MSNs). The individual MSNs were first constructed from individual eight multimodal cortical morphometric features between brain regions. Then the relationship between BMI and MSNs within the discovery sample of 434 participants was assessed. The key findings were further validated in an independent sample of 192 participants. We observed that the lateral non-reward orbitofrontal cortex (lOFC) exhibited decoupling (i.e., reduction in integration) in obesity, which was mainly manifested by its decoupling with the cognitive systems (i.e., DMN and FPN) while the medial reward orbitofrontal cortex (mOFC) showed de-differentiation (i.e., decrease in distinctiveness) in obesity, which was mainly represented by its de-differentiation with the cognitive and attention systems (i.e., DMN and VAN). Additionally, the lOFC showed de-differentiation with the visual system in obesity, while the mOFC showed decoupling with the visual system and hyper-coupling with the sensory-motor system in obesity. As an important first step in revealing the role of underlying structural covariance in body mass variability, the present study presents a novel mechanism that underlies the reward-control interaction imbalance in obesity, thus can inform future weight-management approaches.


Assuntos
Córtex Pré-Frontal , Recompensa , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Encéfalo , Obesidade
16.
Proc Natl Acad Sci U S A ; 121(12): e2309232121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466844

RESUMO

Sociality is a defining feature of the human experience: We rely on others to ensure survival and cooperate in complex social networks to thrive. Are there brain mechanisms that help ensure we quickly learn about our social world to optimally navigate it? We tested whether portions of the brain's default network engage "by default" to quickly prioritize social learning during the memory consolidation process. To test this possibility, participants underwent functional MRI (fMRI) while viewing scenes from the documentary film, Samsara. This film shows footage of real people and places from around the world. We normed the footage to select scenes that differed along the dimension of sociality, while matched on valence, arousal, interestingness, and familiarity. During fMRI, participants watched the "social" and "nonsocial" scenes, completed a rest scan, and a surprise recognition memory test. Participants showed superior social (vs. nonsocial) memory performance, and the social memory advantage was associated with neural pattern reinstatement during rest in the dorsomedial prefrontal cortex (DMPFC), a key node of the default network. Moreover, it was during early rest that DMPFC social pattern reinstatement was greatest and predicted subsequent social memory performance most strongly, consistent with the "prioritization" account. Results simultaneously update 1) theories of memory consolidation, which have not addressed how social information may be prioritized in the learning process, and 2) understanding of default network function, which remains to be fully characterized. More broadly, the results underscore the inherent human drive to understand our vastly social world.


Assuntos
Mapeamento Encefálico , Aprendizado Social , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo , Cognição , Descanso , Imageamento por Ressonância Magnética/métodos
17.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38514180

RESUMO

Deciding on a course of action requires both an accurate estimation of option values and the right amount of effort invested in deliberation to reach sufficient confidence in the final choice. In a previous study, we have provided evidence, across a series of judgment and choice tasks, for a dissociation between the ventromedial prefrontal cortex (vmPFC), which would represent option values, and the dorsomedial prefrontal cortex (dmPFC), which would represent the duration of deliberation. Here, we first replicate this dissociation and extend it to the case of an instrumental learning task, in which 24 human volunteers (13 women) choose between options associated with probabilistic gains and losses. According to fMRI data recorded during decision-making, vmPFC activity reflects the sum of option values generated by a reinforcement learning model and dmPFC activity the deliberation time. To further generalize the role of the dmPFC in mobilizing effort, we then analyze fMRI data recorded in the same participants while they prepare to perform motor and cognitive tasks (squeezing a handgrip or making numerical comparisons) to maximize gains or minimize losses. In both cases, dmPFC activity is associated with the output of an effort regulation model, and not with response time. Taken together, these results strengthen a general theory of behavioral control that implicates the vmPFC in the estimation of option values and the dmPFC in the energization of relevant motor and cognitive processes.


Assuntos
Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Feminino , Masculino , Adulto , Adulto Jovem , Tomada de Decisões/fisiologia , Comportamento de Escolha/fisiologia , Mapeamento Encefálico/métodos , Tempo de Reação/fisiologia , Desempenho Psicomotor/fisiologia , Condicionamento Operante/fisiologia , Julgamento/fisiologia
18.
Commun Biol ; 7(1): 269, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443489

RESUMO

Over the course of evolution, the amygdala (AMG) and medial frontal cortex (mPFC) network, involved in behavioral adaptation, underwent structural changes in the old-world monkey and human lineages. Yet, whether and how the functional organization of this network differs remains poorly understood. Using resting-state functional magnetic resonance imagery, we show that the functional connectivity (FC) between AMG nuclei and mPFC regions differs between humans and awake macaques. In humans, the AMG-mPFC FC displays U-shaped pattern along the corpus callosum: a positive FC with the ventromedial prefrontal (vmPFC) and anterior cingulate cortex (ACC), a negative FC with the anterior mid-cingulate cortex (MCC), and a positive FC with the posterior MCC. Conversely, in macaques, the negative FC shifted more ventrally at the junction between the vmPFC and the ACC. The functional organization divergence of AMG-mPFC network between humans and macaques might help understanding behavioral adaptation abilities differences in their respective socio-ecological niches.


Assuntos
Macaca , Córtex Pré-Frontal , Humanos , Animais , Córtex Pré-Frontal/diagnóstico por imagem , Tonsila do Cerebelo/diagnóstico por imagem , Lobo Frontal , Córtex Cerebral
19.
Sci Rep ; 14(1): 5793, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461360

RESUMO

Social alignment is supported by the brain's reward system (ventral striatum), presumably because attaining synchrony generates feelings of connectedness. However, this may hold only for aligning with generous others, while aligning with selfishness might threaten social connectedness. We investigated this postulated asymmetry in an incentivized fMRI charitable donation task. Participants decided how much of their endowment to donate to real charities, and how much to keep for themselves. Compared to a baseline condition, donations significantly increased or decreased in function of the presence of descriptive norms. The fMRI data reveal that processing selfish norms (more than generous ones) recruited the amygdala and anterior insula. Aligning with selfish norms correlated on average with reduced activity in the lateral prefrontal cortex (LPFC) and, at the individual level, with decreasing activity in the ventral striatum (VS). Conversely, as participants aligned more with generous norms, they showed increasing activity in the LPFC and, on average, increased activity in the VS. This increase occurred beyond the increased VS activity which was also observed in the baseline condition. Taken together, this suggests that aligning with generosity, while effortful, provides a "warm glow of herding" associated with collective giving, but that aligning with selfishness does not.


Assuntos
Instituições de Caridade , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Recompensa
20.
Eur J Neurosci ; 59(8): 2075-2086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409515

RESUMO

Working memory (WM) is one of the fundamental cognitive functions associated with the dorsolateral prefrontal cortex (DLPFC). However, the neurochemical mechanisms of WM, including the dynamic changes in neurometabolites such as glutamate and GABA in the DLPFC, remain unclear. Here, we investigated WM-related glutamate and GABA changes, alongside hemodynamic responses in the DLPFC, using a combination of functional magnetic resonance spectroscopy (fMRS) and functional magnetic resonance imaging (fMRI). During a WM task, we measured Glx (glutamate + glutamine) and GABA levels using GABA editing MEscher-GArwood Point REsolved Spectroscopy (MEGA-PRESS) sequence and blood-oxygen-level-dependent (BOLD) signal changes. In the DLPFC, we observed elevated Glx levels and increased BOLD signal changes during a 2-back task. Specifically, the Glx levels in the DLPFC were significantly higher during the 2-back task compared with fixation, although this difference was not significant when compared with a 0-back task. However, Glx levels during the 0-back task were higher than during fixation. Furthermore, there was a positive correlation between Glx levels in the DLPFC during the 2-back task and the corresponding BOLD signal changes. Notably, higher Glx increases were associated with increased DLPFC activation and lower WM task performance in individuals. No notable changes in DLPFC GABA levels were observed during WM processing. These findings suggest that the modulation of glutamatergic activity in the DLPFC may play a crucial role in both working memory processing and its associated performance outcomes.


Assuntos
Córtex Pré-Frontal Dorsolateral , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Ácido Glutâmico , Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...